Aluminum Alloy Tempering Methods

Newly forged metals are extremely hard – hard to a fault, because such a degree of inflexibility makes the metal very brittle. This applies even to alloys made of naturally ductile metals such as aluminum. However, after some type of tempering treatment is done to ease the tension within the metal’s structure, the aluminum will be left stronger and more resilient than before.

Before beginning, it’s important to determine whether the aluminum being tempered is heat-treatable or not. If the aluminum alloy belongs to one of the following series, it should not be heat treated:
Series 1xxx: pure aluminum
Series 3xxx: alloyed with manganese
Series 4xxx: alloyed with silicon
Series 5xxx: alloyed with magnesium
Pure aluminum and aluminum alloyed primarily with one of the elements in the list above do not respond to heat treatment. In these cases, the material can be toughened through other means such as cold working or work hardening.

For the other aluminum series, their tempering can be done through annealing, homogenizing, solution heat treatment, and aging. Aging can then be further split into two groups: natural aging, and artificial aging (also known as precipitation hardening). Whatever the method chosen, the purpose of tempering is to alter the aluminum’s physical and mechanical properties without changing its shape.

Annealing
For aluminum series not considered heat-treatable, annealing is the method used to temper the metal. Work hardening means the metal is placed under repeated strain during use, which causes the grain structures within it to slide against each other. These stretched areas are called slip planes, and as the aluminum continues to be used, there will be fewer and fewer areas left that are not already slip planes. If the aluminum continues to be used without tempering, eventually the metal will be overworked and break.
The annealing process essentially performs a reset on the aluminum. By exposing it to a relatively low heat of 570 to 770 degrees F, the strain within the metal lessens as the crystalline grain structure returns to its original form. Once cooled, the aluminum can again handle the creation of more slip planes.

Homogenizing
When casting aluminum parts using molds, the edges of the part will cool faster than the interior. This uneven cooling affects the structure of the part since some areas, particularly around the edges, will have grains of pure aluminum. The interior may be more combined with its alloying elements, but have remaining pockets of pure aluminum. Because pure aluminum is quite soft, this means those grainy areas will be weaker.
Homogenizing reduces this issue by heating the aluminum to just shy of its melting point, around 900 to 1000 degrees F, and allowing a gradual cooling. Unlike the heat of the mold, the uniform heat during homogenizing allows the internal structure to develop more uniformly. Once this is done, the cast aluminum part will be much sturdier.

Solution Heat Treatment
Solution heat treating is similar to annealing, but the metal is quenched rather than being allowed to cool on its own. When aluminum cools naturally, a greater degree of precipitation occurs. This means the alloying elements within the metal may drop out of place within the metal’s internal structure, rather than being as fully integrated as when newly forged. The sudden cooling from a quench means the alloying structure will be locked into place.
Depending on the type of alloy, the aluminum is heated to 825 to 980 degrees F, almost near melting point. This heat prompts the aluminum and alloying elements to better combine into solid solution. It is then immediately immersed in water to bring a sudden drop in its temperature. After tempering, the part will be stronger due to its improved homogenization.

Aging
After quenching, there is some precipitation which happens naturally in aluminum alloy. However, this is not a drawback – the alloying precipitation helps to reinforce and lock in place the aluminum’s microstructure. If left at room temperature, natural aging will continue to develop for up to 5 days, with most of the hardening taking place within the first 24 hours. This aging window means aluminum can be shaped after solution heat treating, leaving a much stronger piece after both processes are complete.
With artificial aging, the process of precipitation in some alloys may require a second round of tempering to reach its maximum strength. The metal is exposed to a fairly low temperature of 240 to 460 degrees F, just enough to encourage the alloying elements to begin to precipitate within the metal’s interior. It is then quenched again and allowed to finish cooling at room temperature. While more labor intensive, artificial aging will result in a significantly stronger metal in a shorter time period.