What is a Non-Ferrous Metal?

If you were asked the definition of a non-ferrous metal, the answer may seem obvious: it’s a metal which contains no iron. And while that’s true, it might surprise you that the answer is not entirely correct! Non-ferrous metal is a sprawling category, which covers iron-free metals such as aluminum or copper. But a metal is also defined as “non-ferrous” when its chemical composition does not include a significant amount of iron. This means even an alloy with trace amounts of iron can be correctly identified as being made of non-ferrous metal. A ferrous metal will have iron as the first or second most-abundant element in its makeup. But if iron is present in a non-ferrous metal, it will typically be less than 1% of the metal’s overall composition.

So because the non-ferrous category covers so many different varieties of metal, it can be very difficult to identify common properties shared by them all. Some non-ferrous metals are very soft and ductile, while others are hard and brittle. One non-ferrous metal may be durable enough to weather freezing temperatures, but another is well-suited to withstand extremely high heat. However, there is one common denominator to be found amongst non-ferrous metals: they don’t rust. Since they contain very minimal to no iron, there’s little opportunity for the development of a significant amount of iron oxide. And that means the metal doesn’t show signs of rust.

However, it doesn’t mean non-ferrous metals are corrosion-free. In fact, some non-ferrous metals such as zinc are highly corrosive – much more so than iron itself! But because the term ‘rust’ only applies to the formation of iron oxide, non-ferrous metals technically do corrode but they don’t rust.

Common Non-Ferrous Metals
Aluminum
One of the most widely used non-ferrous metals, aluminum in its pure form is soft and not particularly strong. Once alloyed, it gains strength and durability while remaining relatively lightweight. These assets, along with its machinability, makes it very popular in manufacturing. Common applications for aluminum range from aircraft fuselage and cars, to drink cans and kitchen utensils.

Copper
Like aluminum, unalloyed copper is softer and less strong in comparison to carbon steel. One of its most desirable qualities is its high thermal and electrical conductivity, which is why pure copper is commonly found in wiring and high-end cookware. When alloyed with zinc, it forms another non-ferrous metal, brass. Brass is stronger than copper, while retaining a high degree of malleability. This makes it popular for fittings and castings in a variety of shapes. Copper can also be alloyed with tin to create bronze – again creating a stronger and harder metal than the original copper, with better durability. Given the toughness of bronze parts, it’s a popular choice to manufacture bearings, electrical connectors, and springs.

Zinc
Zinc is a non-ferrous metal with a low melting point. As mentioned before, it is more likely to corrode than iron. However, the type of corrosion produced by zinc is beneficial: the zinc oxide which forms on the layer of the metal stops any further corrosion from reaching inside. For this reason, of the most common uses for zinc is in galvanizing other metals. The outer layer of zinc forms a protective coat on steel or iron to prevent rust.

The Stages of Metal Fatigue

It’s well known that the long term consequences of living under chronic stress are harsh, taking a toll on our health ­­and overall well-being. When it comes to the harmful effects of stress, metal is no different: too much repeated wear and tension will lead to fatigue, and eventually to a breaking point. And much like our bodies, a metal’s breakdown won’t necessarily occur from one major incident. Often the cracking and weakening that leads to metal fatigue will be gradual, going unnoticed until it’s too late.­­

­­­

In the development of metal fatigue, there are three stages:

Stage 1: Crack Initiation

Fatigue cracks will almost always begin around a stress riser point, an area of the metal where the stress becomes concentrated. The stress riser’s susceptibility to cracking may stem from irregularities in the material itself, flaws in the metal part’s construction, or from vulnerabilities caused by damage such as scuffs and scratches. But whatever the reason for a stress riser, its weakness means that micro-cracks in the metal are likely to begin there. The edges of a metal part can be stress risers, since they’re most likely to be receive the brunt of an impact and be damaged. Weld joints are often the culprit as well, since the join of the weld may be weaker than the surrounding material.

Stage 2: Crack Propagation

Repeated stresses will cause micro-cracks, and if they continue, those faults within the metal will begin to grow. Typically crack propagation will be the longest-running stage of metal fatigue, worsening slowly over time with steady repetition. However, it can be accelerated by other factors. Increased moisture collecting on the surface from weather, vibration from moving parts, and greater stress placed on the metal will all increase the likelihood of crack growth. The danger is that these accelerants are obvious pitfalls leading to metal failure, but metal fatigue is often much more subtle and easy to miss. Because of this, a lack of maintenance which allows the unchecked growth of micro-cracks can lead to a sudden and unpredictable failure.

Stage 3: Final Catastrophic Failure

If metal fatigue is allowed to progress to this stage, it will result in a final failure event: the metal will fracture. Depending on the material’s thickness, metal composition, and applied stress, the fracture will be either ductile or brittle. In a ductile fracture, the metal is deformed by being bent out of shape. The edges of the fracture may crumple and bend, but not necessarily break all the way through. When it comes to a brittle fracture, it’s exactly as it sounds: the metal shatters or snaps. In a typical case of brittle fracture metal fatigue, the pieces will snap completely apart. There will be little to no plastic deformation (a change in shape) in the metal as compared to a ductile fracture. Instead, you’ll see smooth snapped edges where the break occurs. In either case, the final stage of metal fatigue is often sudden and without obvious warning signs.

Common Metals That Don’t Rust

When it comes to protecting and maintaining metal, the most constant battle encountered will be against rust. Rust compromises a metal’s chemical characteristics, eventually leading to its disintegration. And even if it doesn’t progress to a destructive point, it’s just not very appealing on an aesthetic level. The distinctive orange-brown of rust forming on metal can make it look old and shabby long before its time. So one of the best solutions to this problem is to eliminate it from the start: choosing a metal that won’t rust.

Common rust-free metals include:

  • Aluminum
  • Stainless steel
  • Red metals (copper, brass, and bronze)
  • Galvanized steel

Aluminum

Aluminum and aluminum alloys cannot rust because they contain no to very little iron, and ‘true’ rust is made up of iron oxide. That doesn’t make aluminum indestructible, since it can still oxidize when exposed to water. But unlike iron oxide which will wear away at the underlying metal, the forming of aluminum oxide actually becomes a protective barrier. Once it develops on the aluminum’s surface, the oxide layer will be quite resistant to any additional corrosion.

Stainless steel

Most grades of stainless steel include at least some amount of iron, the element which leads to rust. However, the other alloying elements – particularly chromium – lends it protection to the material. Chromium tends to oxidize very quickly and like aluminum, the resulting oxide then forms a barrier against rust. With this chromium oxide layer in place, oxygen is no longer able to reach and react to the metal underneath. Other alloying elements in stainless steel such as nickel and molybdenum provide resistant to rust development.

Copper, brass, and bronze

Collectively known to as “red metals”, these metals can oxidize without rusting since they contain virtually no iron. Copper is very slow to react to oxygen and other environmental factors, but once corrosion does occur it will gradually turn the bright reddish metal to a verdigris green patina. Brass and bronze are copper alloys, with the dual benefits of copper’s own corrosion resistance and the rust-free properties of alloying elements. Both brass and bronze are even more resistant to corrosion than pure copper.

Galvanized steel

Unlike the other three types mentioned, galvanized steel relies upon the application of a physical barrier to prevent rust. Carbon steel is galvanized after being coated with a thin layer of zinc. After bonding with the surface, any oxidation which does occur becomes zinc oxide. A zinc layer exposed to water will become zinc carbonate, which is water-insoluble and puts a stop to any further chemical reactions. More importantly, whatever oxidation that takes place will affect the wear of the zinc before reaching the steel underneath.

How to Prevent Rust

We’ve all seen rust, whether it’s the dirty-orange flaking off a fence or swing set and marking up your children’s clothes, to the brownish water flowing in houses with old plumbing. But rust isn’t just an annoyance with its unsightly appearance and tendency to stain. For iron equipment and structures, rust can become a real danger when allowed to progress unchecked. In cases such as the Genoa bridge collapse in August 2018, a lack of maintenance to prevent rust and corrosion can lead to deadly consequences.

When it comes to iron corrosion, the equation is simple: oxygen from air or water + iron = rust. The longer iron is left exposed to oxygen, the more quickly and completely it will rust. So when it comes to rust prevention, the best solution is to somehow attempt to keep these elements apart. These methods include:

Materials

A common choice is to attempt to avoid the issue from the start by using steel alloys, weathering steels, or other alloys which contain virtually no iron. These materials are either naturally resistant to rust, or manufactured to be as rust-free as possible. Stainless steel contains at least 11% chromium, which forms a protective film of chromium oxide preventing any further corrosion. Weathering steels may include up to 21% alloying elements like chromium, phosphorus, nickel and copper. In comparison to stainless, weathering steel will form a patina and begin to look to look orange and rusty. However, appearances can be deceiving: unlike the damaging rust formed on iron structures, the rust formed on weathering steel is actually beneficial. The alloying elements stop any internal corrosion with the rust as an outer layer.

Organic coatings

A simple and cost-effective method of preventing rust is paint. Covering a metal item in an overall coat of paint creates a physical barrier between the metal and oxygen. Oil-based paints are usually the preferred option since they contain no water. It’s also appealing because the oil paint adheres better, is durable, and will dry to a more even finish.

Powder coatings

Like paint, a powder coating creates a protective layer to prevent rust. Powders are commonly applied to the steel by using a compressed air sprayer. Once the powder particles are clinging to the object’s surface in an even layer, it’s ready to be heat-cured. This involved placing the object in a hot oven, which will melt and fuse the powder particles into a continuous coat. So while this method involves more time and expense than painting, the biggest advantage of powder coating is its durability. Not only is it rust-resistant, it’s more resistant to chipping, scratching and other wear due to the thermal bonding of the curing process.

Galvanization

Steel is galvanized by applying a layer of zinc, which provides two benefits: it forms a strong physical barrier, and if corrosion does occur, it will affect the outer zinc rather the metal underneath. For items such as car exteriors that will later be painted, electroplating galvanization is used to bond the zinc to the steel. The process will leave the metal with a soft, even shine. For hot-dipping galvanization, the steel is immersed in a bath of molten zinc and dries to a flat finish. Hot-dipped galvanized steel is often preferred for construction projects because the resulting zinc layer may be up to 5 to 10 times thicker with this process. With each layer of zinc comes more protection against rust.

Maintenance

No matter what material is chosen or coating applied, the best protection against rust will always involve continued routine maintenance. Any deposits and dirt on the metal should be cleaned on a regular basis. If any rust does form on the surface, it should be removed it as quickly as possible, with a protective coating applied or re-applied to the item. Neglect means even a structure as strong as a bridge can be destroyed from the corrosive effects of air, water and salt rusting the steel.

What is a Ferrous Metal?

When classifying metals, focusing on a particular property is most often used as a way to divide them into two groups. Is this metal ductile or non-ductile? Is it magnetic or not?

When it comes to ferrous metals, one basic quality determines the groups: whether the metal contains iron. If iron makes up a large percentage of its composition, the metal is considered to be ferrous. If it contains no iron, or just trace amounts of it, it will be labeled a non-ferrous metal.

Beyond that, it becomes more difficult to apply general labels on the groups and the metals’ properties. While ferrous metals can range from iron itself to stainless steel, the alloying elements greatly affect the metal’s characteristics. For example, most ferrous metals are magnetic. But austenitic stainless steel is not, due to the high levels of nickel added to the steel for alloying. The nickel allows the steel to form in a crystal structure that is mostly austenite – and austenite is not magnetic.

So although it can be difficult to generalize about all ferrous metals as a group, there are some general characteristics that can be made about them. Ferrous metals are very hard and strong, especially in comparison to non-ferrous ones such as tin or copper. They’re vulnerable to rust due to their high percentage of iron, unless given corrosion resistance through alloying elements or protective coatings. And they’re usually (but not always) magnetic, which makes them very useful for motor and electrical applications.

The most common categories of ferrous metals include:

  • Carbon steel: there’s certainly no question of this being a ferrous metal, with over 90% of its composition being made up of iron. It is very hard and can keep a sharp edge, making it well-suited for mechanical uses such as drill bits and blades.
  • Cast iron: this metal is exceptionally hard due to its high levels of carbon, but the carbon also makes it quite brittle. For this reason, cast iron is now primarily used for smaller machine components or cookware.
  • Stainless steel: the most commonly used type of ferrous metals, especially for consumer goods. The addition of chromium is what makes a steel stainless, and gives it good corrosion resistance. And it’s magnetic, which is why you can stick magnetics on your refrigerator.
  • Alloy steel: the properties of this group of ferrous metals can vary much more widely than the others, since the alloy is specifically formulated for a particular purpose. So while alloy steels are ferrous, the added elements allows the metal to be tailored for more strength, ductility, hardness or other property.

What is the Difference between Annealing and Tempering?

At first glance, it might be difficult to distinguish annealing from tempering. Both are heat treatments designed to alter the physical and mechanical properties of a metal, and both involve heating that metal and gradually cooling it. So what makes the annealing steel different, and what are the advantages of this process?

When it comes to annealing, it’s important to remember how dependent the process is on precision and control. Like tempering, annealing involves reheating quenched steel and then allowing it to cool. However, at each stage of the annealing process, careful oversight is crucial to producing the most high-quality result possible.

Annealing involves three separate stages:

  1.  Recovery: simply put, this is applying heat to soften the metal. To ensure the most even heat distribution, air should be allowed to circulate freely around the items being annealed. For this reason, the heating is most often done in large ovens which can be tightly sealed, raised to the desired temperature, and closely monitored. Recovery then occurs when the heat breaks down dislocations and other irregularities within the metal’s structure.
  1. Recrystallization: during this stage, the heat is raised to above the metal’s recrystallization temperature while still remaining just below its melting point. This means that new smaller grains are formed within the steel, replacing older grains with pre-existing stresses. So while the finished product will be less hard then it was before, the uniform structure of the new grains will give the steel more strength and resiliency.
  1.  Grain growth: this is the cooling stage of the annealing process. In contrast to tempering, which allows the steel to cool naturally at room temperature, the cooling of annealed metals must be highly controlled. To do this, cooling is often done by immersing the hot steel into a low-conductivity environment such as burying it in sand or ashes. It can also be done by switching off the oven and allowing the metal to slowly cool within the machinery’s fading heat. Whatever the method used, the aim is to have as slow and gradual a cooling process as possible. When fully cooled, the steel will now possess a more refined micro-structure. In real terms, this means it has more elasticity, so that it can take the stress of machining or grinding with far less risk of cracking.

While all heat treatments result in a strengthened alloy, annealing is crucial for items that have previously been cold worked. Cold working produces stresses within the metal, which annealing then helps to reverse by bringing it closer to the metal’s original properties. That means the benefits of annealing are twofold: eliminating as much residual stresses as possible while restoring its strength and ductility. So while tempering is used for products such as structural beams, the more ductile steel produced through annealing is found in items like mattress springs, wiring, and tools.

What is Metal Aging?

Aging [verb]: the process of growing older. While that definition does apply, in the metals industry “aging” is specific jargon referring to treatments which speed up that process. But why would you choose to age your new metal products? It helps if you remember not to view aging as a negative. In fact, much like wine, the properties of a metal alloy often improve with age.

As metal ages, its base material physically transforms. The interaction of the metal’s atoms with the oxygen in its environment – whether surrounded by air or water – will begin change its surface texture and color. This starts with a basic oxide layer being formed. The oxide then becomes a hydroxide, and the hydroxide layer continues to interact with the atmosphere.

So why is this exposure to the elements considered a desirable result, unlike rust? That’s because iron oxide, or rust, is much more fragile and ultimately destructive when compared to a hydroxide. Exposed iron develops rust which flakes off and forms again, and will continue this cycle until it deteriorates the metal below. Meanwhile, a hydroxide layer actually creates a more stable surface composition. This hydroxide effectively creates an outer shell, which shields the metal below from any further interaction to its environment. The aging process of the metal comes to a near halt, with the hydroxide layer giving it both greater strength and longevity.

In general, there are two types of metal aging:

Natural aging: just as the name suggests, this is letting the metal age with time, in its natural environment. The strengthening benefits of aging will be more gradual but still effective.

Artificial aging: this refers to any method used to artificially accelerate the aging process. This is usually done through heat treatment of the metal alloys.

Both types do carry a risk of over-aging. This happens when the aging process pushes the metal past the point of strengthening into stressing and deteriorating it. As you might expect, this is more likely to occur with artificial aging: either because the metal has already undergone the aging process, or the heat applied is too intense or prolonged. However, when properly carried out, metal aging is a great benefit to the finished product.

Decoding Steel by its Numbers

Like any other field of expertise, the steel industry has its own jargon – one that may be confusing upon first encounter. Why are they assigned four-digit codes? What’s the difference between Alloy 4130 and 4140?

Steel is sorted into four main categories as set by the AISI (American Iron and Steel Institute):

Being steel, these contain the same two basic elements of iron and carbon. Determining their category depends on the percentage of carbon and other alloys added to the iron, which changes the properties of the finished metal.

Within each category, steel can then be classified according to type. This usually includes several of the descriptive factors below:

  • Composition: the main categories of carbon, alloy, stainless, and tool steel.
  • Microstructure: these are the subcategories of composition. For instance, stainless steel can be classed as ferritic, austenitic, martensitic, and duplex steels.
  • Method of production: two methods account for almost all modern steel production, known as EAF (electric air furnace), and BOS (basic oxygen steelmaking).
  • Form/Shape: also known as primary forming, creating shapes such as plate or bars.
  • Method of finish: this is referred to as secondary forming, the techniques which give the final product its properties and finish. This can include processes such as hot and cold rolling, tempering, or galvanizing.
  • Physical strength: using ASTM (American Society for Testing and Materials) standards, the designation typically includes a letter prefix and assigned number.

There are two primary numbering systems used to classify metals, so steel descriptions typically will include both. Along with AISI, the numbering system set by SAE (Society of Automotive Engineers) is most used in the metals industry. For the most part, SAE has adapted their system to align with the classifications set by AISI, so that specifications are standardized for steel.

So with this information, consumers have the ability to recognize the category and classification of a steel item. In the four digit code system, the first number will determine the type:

Starting with 1: Carbon steel

2: Nickel steel

3: Nickel-chromium steel

4: Molybdenum steel

5: Chromium steel

6: Chromium-vanadium steel

7: Tungsten-chromium steel

8: Nickel-chromium-molybdenum steel

9: Silicon-manganese steel and other SAE grades

The following numbers then give additional detail to the specific type of steel. In most cases, the second digit indicates the percentage of alloying element. The last two digits are the percentage of carbon concentration within the steel.

So using the example of 4130 vs 4140 steel: both start with a 4, so they are molybdenum steels – with the concentration of molybdenum being 1%. The difference between the two is that 4130 has a carbon percentage of roughly 0.30%, while 4140 contains 0.40 percent carbon. Because of its lower carbon percentage, 4130 would be more easily machined and weldable than 4140. However, the higher degree of carbon in 4140 alloy gives it greater hardness and strength than 4130. Armed with this knowledge, this may better help you choose the right type of steel for your needs.

Uniform Metal Corrosion and Prevention

Corrosion is the deterioration of a metal due to an electrochemical reaction between the atoms on the metal’s surface and its surrounding environment. Most commonly, corrosion refers to oxidation: the process where a metal reacts to the oxygen in air or water. The most familiar example of corrosion is iron oxide (rust), but other metals can corrode in similar ways. Given sufficient time and exposure, corrosion will have a significant negative impact on the metal’s appearance, strength, and durability. If left unchecked, corrosion will eventually lead to the weakening or total disintegration of the metal parts. The World Corrosion Organization (WCO) estimates the annual cost of corrosion to be up to $2.5 trillion dollars – and that up to 25% of that damage is entirely preventable.

General Attack Corrosion, also known as Uniform Attack Corrosion, is characterized as the reaction occurring over the exposed surface area of a metal object or structure. This is the most common type of corrosion, leading to the greatest overall destruction of metal by tonnage. However, from a technical standpoint, it is also considered to be the ‘safest’ form of corrosion to encounter. The damage which occurs with general attack corrosion, being fairly uniform and predictable in its progress, means it is the easiest to diagnose and prevent.

How to Prevent Uniform Metal Corrosion

1. Selecting the Right Metal: The four basic types of metals referred to as “corrosion-proof”

Stainless Steel: This alloy contains iron, which easily oxidizes to form rust, and chromium, an element even more reactive to corrosion than iron itself. However, when chromium is added to steel, the corrosion which results then forms a protective layer on the surface of the metal. In contrast, corrosion which occurs on uncoated carbon steel will repeat continuously as the rust forms, wears off, and forms again. Eventually the rusting will lead to the metal’s disintegration. Iron oxide layer on stainless steel will resist further corrosion. This means the layer actually prevents oxygen from reaching the steel underneath. Corrosion-resistant in stainless steel can be further boosted by the addition of other elements in the alloy such as nickel and molybdenum.

Aluminum: Since aluminum alloys contain almost no iron, they are free from rust. The corrosion with this metal is similar to chromium in stainless steel; after the initial corrosion occurs, it creates a surface layer that protects the metal from any further damage. This film of aluminum oxide can be unsightly with dark marks or streaking, but as long as it remains, it will shield the underlying metal.

Brass, Bronze, and Copper: Like aluminum alloy, these metals contain little to no iron. They do react with oxygen – most noticeably with copper, which oxidizes to a distinctive green patina. The oxidized layer helps protect the copper from further corrosion. The other two metals combine copper with other metals, which makes them naturally corrosion-proof: copper and zinc to produce brass, and copper and tin for bronze.

Galvanized Steel: This is carbon steel that is galvanized, or coated, with a thin layer of zinc. Like chromium and copper, zinc is highly reactive to oxygen and will quickly begin to oxidize. This layer of zinc oxide prevents any further corrosion on the galvanized coating. Even more importantly, it acts as a barrier preventing oxygen from reaching the steel. Eventually, the zinc will wear off which will make the carbon steel vulnerable to rust, so this type of metal is not entirely corrosion-proof. However, it will take much longer to rust than untreated carbon steel.

2. Protective Coatings

In addition to galvanized steel, other coatings can be applied as a barrier between the environment and the metal. Painting is one of the most cost-effective ways of preventing corrosion. Powder-coating is another popular option. This involves applying a dry powder to the metal and then heating it to fuse it in an even, smooth film. Both methods work by creating a uniform physical barrier between oxygen and the metal.

3. Monitoring the Environment

Simply put, corrosion is the reaction of the metal with its surrounding environment. So whether the environmental factor is air, water, stresses placed upon the metal itself, or all of the above, regular maintenance and monitoring goes a long way towards preventing or lessening the impact of corrosion. Crevice corrosion, for example, is commonly found in areas where metals overlap each other. This means the metal parts are exposed to varying oxygen concentrations, leading to uneven wear and deterioration. Proper maintenance such as eliminating crevices when found, or ensuring complete drainage in vessels, can help to prevent this corrosion. In harsher environments, replacing parts and fastenings with higher alloys can help preserve the metal’s functionality.

All metals will corrode eventually, but the process does not necessarily need to be a destructive one. By anticipating how and where an item will be used, the choice of metal and its maintenance can prevent corrosion from becoming a serious problem. Corrosion prevention not only helps save equipment and money, but it will also help keep metals safer for the people who use them.

Hot Rolled vs Cold Rolled, So much to know

Is one a better choice for your project?

What type of rolled steel would make the better choice for your project? It’s important to understand the fundamental differences between hot and cold rolled steel in order to select the best one for your needs.

Rolling is a metalworking process where the metal is passed through one or more pairs of rolls, which reduces thickness and makes the material uniform throughout the roll. Imagine the steel as if rolling dough through a pasta-maker, flattening and thinning it out until you have an even, smooth product.  The two types of rolling are hot and cold, which is determined by the metal’s temperature during processing. Hot rolling occurs when the metal is heated above its recrystallization temperature. Cold rolling is when the metal is processed while below the recrystallization point.

Hot Rolled Steel

Hot rolling involves rolling the steel at a temperature point above its recrystallization temperature, typically around or above 1700 degrees F. This means the steel can be shaped and formed easily, including producing much larger sizes. Since the manufacturing can be done without pauses or delays in the process, this means hot rolled steel is typically cheaper than cold rolled steel.

Because of the high processing temperature, the hot rolled steel will have a rougher, scaly finish and will also shrink slightly as it cools. This means the finished product can vary in its size and shape dimensions, and at a lower price point than the same item produced through cold rolling. Hot rolled steel is best suited for uses like welding, railroad tracks or construction, where precise shapes and tolerances may not be required.

Cold Rolled Steel

Cold rolled steel is manufactured below its recrystallization temperature. Essentially, it’s hot rolled steel with additional processing in cold reduction mills. Because it is typically produced around room temperature, the process allows for closer dimensional tolerances and a wider range of surface finishes for the steel.

‘Cold rolled’ is often mistakenly used to describe all steel products, but it refers specifically to the rolling of flat rolled sheet and coil products. For other steel shapes produced below the recrystallization temperature, the accurate terminology is “cold finishing”. For instance, a cold finished steel bar is produced by cold drawing (pulling) the metal, then turning, grinding and polishing. This produces a much more precise end product with four advantages:

  • Increased yield and tensile strength
  • Fewer surface imperfections due to the turning process
  • Grinding gives closer size accuracy and precise shapes
  • Polishing improves the surface finish

The exception is cold rolled sheet versus hot rolled sheet. For this particular product, the cold rolled steel has a low carbon content and is typically annealed (heat treatment to increase ductility). This means cold rolled sheet will be softer than hot rolled sheet.

Overall, cold rolled and cold finished steel is superior to hot rolled steel in finish, straightness and tolerance, and comes at a higher price point. It would be the recommended choice when visual appeal is a priority for your project. Typical uses include building materials for sheds and garages, metal furniture, and home appliances.

Buy Hot Rolled or Cold Rolled Steel

Here at FastMetals we offer a range of Hot Rolled and Cold Rolled steel products – we offer great quality product, reasonable pricing and fast shipping – shop online at FastMetals.com or call us toll free at (833) 327-8685.