Heat’s Effect on Metal Properties

Often when we speak of heat, it concerns scenarios we’d rather avoid: getting sweaty and sunburnt from the summer sun, overheating laptops or car engines, maybe singeing your hair after leaning too close to a candle. And rightly so! In all these cases heat can be damaging, whether to your possessions or your own self.

Yet despite some risks, heat is greatly beneficial. The sun’s beams feel warm and pleasant after a cold winter. The flames of a stove burner or grill cook your food. And when it comes to metal, heat is no different. Too much heat can damage metal to the point of weakening or destroying it. But heat is also a transformative force, from forging the metal to hardening it and modifying its mechanical properties.

There are four ways the application of heat affects metal:

  • Structural
  • Electrical Resistance
  • Magnetism
  • Thermal Expansion

Structural

Heat is a crucial part of the metal making process, with furnaces heated to such high temperatures that metal ore turns molten. However, it’s not always necessary to go to such extremes to affect the properties of the metal. Any time metal is heated, the atoms making up the metal or alloy begin to move. Given enough heat and then carefully cooled, the crystal structure of the metal can be reshaped into a lattice that is much stronger than prior to heat treatment. In the case of high carbon steels, heat application allows the iron to absorb additional carbon, which produces an exceptionally hard and strong steel.

Electrical Resistance

As metal is heated, the electrons within it will absorb energy and move faster. The faster the electrons move, the more likely they are to collide with the metal’s atoms and scatter them. Electrical resistance measures how strongly the metal works against this potential scattering as the temperature rises. That means the higher the electrical resistance of a metal, the lower its conductivity.

Magnetism

There are three elements with naturally magnetic properties, known as ferromagnetic metals: iron, cobalt, and nickel. But once heat is applied – and especially as the temperature goes up – the metal’s natural magnetism is reduced. If heated to a certain point known as the metal’s Curie temperature, its magnetic property will be reduced completely.

Thermal Expansion

As metal is heated, it begins to expand; its volume, length and overall surface area will grow as it continues to absorb more heat. This is due to the atoms making up the metal, which increase their movement as the temperature rises. This movement creates vibrations within the metal’s structure to the point that it swells, an occurrence which is known as thermal expansion. For safety reasons, any metal structure such as bridges or buildings must be designed to accommodate a certain degree of thermal expansion and contraction. Otherwise, you run the risk of damaging the metal as it warms and cools.

MTR: Mill Test Reports

Each day, we take for granted that the metals we encounter and use in our ordinary lives are safe. The steel framing in apartments and high-rise buildings, the aluminum fuselage of a passenger plane, the metal making up our cars and appliances: very rarely do we question the composition of the metal itself. Our lives go smoothly because we can trust these metals are safe and sturdy. We’re able to make that assumption because of the quality controls practiced by the metal industry, and that quality assurance rests largely on the mill test report (MTR).
At every step of the manufacturing process, the metal is accompanied by its MTR. From the mill forging the material, to the service center performing heat processing and finishing, to the company purchasing the items, the MTR passes from hand to hand. But what exactly is included in a mill report that makes it so important?


Mill Test Report
¬As might be expected, most mills will have their own style and layout for an MTR. They may not even call it a Mill Test Report at all: MTR is industry jargon that can also refer to a Material Test Report, a Mill Certification, or Mill Inspection Certificate. But whatever the name, the information the MTR includes is standard across the industry. When reviewing the document, you can expect it to list the following:

• Production information: the metal’s country of origin, melt location, and manufacturer’s name

• Product description: the item’s alloy, temper, grade, finish, width, thickness, and weight

• Material heat number: also referred to as the heat lot, this is an identifying code that is stamped directly onto the metal itself. As each lot of metal is produced, it is assigned a unique code to identify it as part of that batch. This provides a high degree of traceability, no matter where the metal might end up or its purpose. If there is any type of recall or issue with the metal, this number allows it to be traced back to its origin.

• Mechanical and physical properties: this states the metal is compliant with the criteria set by an international standards organization, such as ASME or ANSI. It is especially important in the case of alloys, because it certifies the chemical makeup of the metal. This is where the “test” portion of the MTR applies. While the metal is molten, a sample is drawn from each batch for metallurgical chemical analysis. Once the item is forged, mechanical testing is then performed on the finished item. Putting items such as steel plate through hardness, tensile and impact tests establish that the material will perform to the necessary standards under specific conditions.

• Inspection: in addition to the mill’s test information, the metal requires certification from an independent inspector. This means the MTR typically includes two signatures verifying the material’s makeup: one from the mill itself while producing the metal, and a second from the inspection agency. This third party inspection provides additional authentication of the metal’s physical and mechanical properties, along with confirmation that the heat number matches the actual item. If all information is correct, the inspector signs off on the report as a final step.



Do I Need the MTR?
For companies involved in the industrial side of manufacturing, distribution, and use of metals, MTRs are a necessity. These standards ensure that the metals will be appropriate for their intended use, and able to measure up successfully to further processing such as welding with compatible metals. If the finished goods or structures later experience some type of metal failure, the information provided by the MTR enables every item can be traced back to its source.
However, MTRs aren’t a necessity for the average consumer. Buying from reputable mills and distributors means that they have done the groundwork for you by collecting the MTRs for their products. Companies are required to keep their MTR documentation for a minimum of three years. However, many companies keep their records for much longer, priding themselves on being able to trace back their materials whenever the occasion may arise.

Reliance Steel & Aluminum Co. Launches FastMetals E-Commerce Platform

LOS ANGELES, Feb. 19, 2020 (GLOBE NEWSWIRE) — Reliance Steel & Aluminum Co. (NYSE: RS) today announced the launch of its new e-commerce business, FastMetals, Inc. (www.fastmetals.com), which offers a catalogue pricing model for a diverse selection of metal products including carbon, stainless, aluminum and specialty alloy steels. Located in Massillon, Ohio, FastMetals ships nationwide and has direct access to Reliance’s vast network of metals service center locations which carry over 100,000 products.

“FastMetals was created in response to the growing demand for digital purchasing solutions from metalworkers of all backgrounds,” commented Jim Hoffman, President and Chief Executive Officer of Reliance. “Consistent with Reliance’s core business strategy, FastMetals specializes in small orders with quick-turn around and best-in-class customer service. We are excited to launch this new, innovative venture that differs from our traditional sales model as simply another option for customers to purchase metal from us. Many of our existing service centers presently offer online capabilities and continue to receive inquiries via phone, email or other means based on the individual customer’s preference. FastMetals is yet another channel to experience Reliance’s unique, customer-focused service.”

FastMetals’ model is tailored to smaller, specialized end-users including artists, fabricators, machine shops, hobbyists, and do-it-yourself practitioners. Customers can choose from standard shapes and sizes or select specific dimensions to satisfy unique project requirements. FastMetals provides instant pricing, same-day shipping, no minimum order quantity and direct fulfillment to the individual customer.

About Reliance Steel & Aluminum Co.
Reliance Steel & Aluminum Co. (NYSE:RS), headquartered in Los Angeles, California, is the largest metals service center company in North America. Through a network of more than 300 locations in 40 states and thirteen countries outside of the United States, Reliance provides value-added metals processing services and distributes a full line of over 100,000 metal products to more than 125,000 customers in a broad range of industries. Reliance focuses on small orders with quick turnaround and increasing levels of value-added processing. In 2018, Reliance’s average order size was $2,130, approximately 49% of orders included value-added processing and approximately 40% of orders were delivered within 24 hours. Reliance Steel & Aluminum Co.’s press releases and additional information are available on the Company’s website at www.rsac.com.


Brenda Miyamoto
Investor Relations
(213) 576-2428
investor@rsac.com

or Addo Investor Relations
(310) 829-5400