Sheet Metal Fabrication

What is Sheet Metal Fabrication?

Sheet metal fabrication is a multifaceted process of creating metal parts or structures out of sheet metal.

Cutting: Cutting metal into pieces of precise dimensions or dividing large sheets into several parts are examples of sheet metal processing. You can cut sheet metals manually using power tools, metal saws, lasers and waterjet saws.

Blanking: Blanking involves cutting out a portion of the sheet metal based on a stencil. Excess material is discarded or recycled.

Bending: Depending on your specific design, you may need to bend portions of the sheet metal pieces you have made. You can do this using press brakes and other tools.

Galvanizing: Corrugated roofing panels, for example, are a great example of this type of use. Zinc coated materials works effectively in prolonging the life of your roof.

Milling: If the metal work piece is still too thick and further reducing its thickness through rolling or stretching is impractical, milling is the next best course of action. It requires the use of a rotary cutter.

Welding: Joining together two pieces of metal by applying heat and pressure with gas or electricity can be used to build structures and create parts.

How is Brass Made?

Crafting brass is a complex journey that involves more than meets the eye. It takes both science and artistry to transform raw materials into beautiful objects. Creating brass involves several processes before it can become its recognizable bright gold appearance. Each step adds something special until we finally have one of mankind’s most enduring materials — brass.

Melting 

Melting brass begins by heating the metal until it reaches its low melting point at 1,999 degrees Fahrenheit. Once the metal has reached its melting point, it will liquefy at the edges first before flowing towards the center of the container where it is heated. 

Gradually increasing the temperature throughout this process, to avoid uneven heating or cooling, is critical. Without a gradual climb in temperature, cracks may be present in the final product. The zinc present in a brass alloy gives the finished product a yellowish tint and increases its strength, while in copper alloys produce a deeper color and add elasticity to the alloy. 

Cold Rolling and Annealing

Cold rolling is a process that involves passing the brass through a series of rollers at different temperatures. This process reduces the thickness of the sheet, as well as increases its length. Cold rolling improves the material’s flexibility, tensile strength, hardness, and yield strength.

The annealing process helps improve the mechanical properties of brass. Annealing means heating brass to a specific temperature for a specific amount of time. After cold rolling or annealing operations have been performed, it will be ready for further processing according to your specific needs.

Hot Rolling

Hot rolling is used to produce flat products, like sheet or plate, by passing them through a series of rollers under high pressure. The pressure causes the material to elongate and become thinner as it moves through each successive pair of rollers until it reaches its desired thickness.

This process can occur at room temperature or above 1,832 degrees Fahrenheit. In brass manufacturing, hot rolling produces large coils of material that is then further cut-to-size into pattern sizes.

What is the difference between Aluminum Association, American Standard and Sharp Corner?

It’s one of those pieces of information that we all seem to misplace…what really IS the difference between Aluminum Association, American Standard and Sharp Corner products?

First, let’s name that shape! The base, or depth, is often noted as the first dimension of the shape. The thickness, or web, is the thickness of the base/depth. Lastly, the legs or flanges are the uprights of the channel.

Each of the different types, Aluminum Association (AA), American Standard (AS) and Sharp Corner (often called Architectural) have a different combination of leg and interior corner types.

Aluminum Association (AA) has curved (radius) interior corners and straight legs with flat ends.

Need help remembering? We like to make a connection between letters AA in Aluminum Association, and the flat ends of the legs.

American Standard (AS), on the other hand does not have ANY flat or sharp corner in its interior or legs. The legs taper from thick to thin and have rounded ends. You can almost see the shape of an “S” between the rounded legs and the radius interior corner.

Everything about “Sharp Corner” is what it sounds like! 90 degree interior corners and straight legs with flat ends make everything angular. Sharp Corner, or Architectural also only comes in aluminum alloy 6063.

How it’s Made: Aluminum

Aluminum, whether or not you know, is present in our daily lives in some fashion. But how did it get that way?

Let’s step back to look at how aluminum is made.

The first step in aluminum production is mining. Mining takes place in Bauxite-rich regions of the world such as the Caribbean, Australia and Africa. Bauxite is a naturally occurring ore that contains aluminum silicates that took millions of years to create from the natural chemical weathering of rocks.

After mining comes refining. Bauxite alone does not create aluminum, it’s the process of grinding the Bauxite and adding it to a mix of caustic soda and lime to which high heat is applied. After this intense process of heat and pressure occurs, aluminum oxide is created and precipitated out of the mix. It is washed and heated again. Now the mix looks like a white powder and is called ‘Alumina’. Alumina is also known as ‘aluminum oxide’.

Alumina is then smelted, which is an electrolytic reduction process. Electric current is passed through the bath of dissolved alumina and the aluminum metal is created and separates from the original chemical solution.

We aren’t done yet! After the aluminum is created it goes back into a furnace and is mixed with other metals or elements according to a precise scientific recipe in order to create a molten metal that is chemically suitable for certain applications. Purification then occurs and the molten metal is cast into ingots or molds and cools, awaiting its final processing.

Lastly, the ingot or cast material is either rolled, forged, drawn or extruded into its final form: sheet, plate, bar, tube or custom extrusion.

Bar stock can end up as the screws you buy from a hardware store and sheet products could be formed into a filing cabinet you use for important documents.

Next time you use or see something in your daily life that is aluminum- remember the long process it took to get that way and all the people and processing that happened along the way.