Ferrous VS Non-Ferrous Metals: Essential Know-Hows

Exploring the difference between ferrous and non-ferrous metals reveals a fascinating aspect of material science integral to various industries and technological advancements. Here, we will examine their distinct properties, historical significance, and diverse applications, highlighting how these metals have shaped human civilization. From the early days of copper to the modern use of steel and aluminum, understanding these metals offers valuable insights into their practical uses and their role in historical development.

Ferrous vs Non-Ferrous Metals: A Brief History

Human civilization has always been shaped by its ability to harness and manipulate materials. Among the pivotal categories of materials are ferrous and non-ferrous metals, each playing distinct roles in the development of technologies, industries, and societies

Non-Ferrous Metals

The journey of non-ferrous metals began with the discovery of copper around 5,000 BC, which marked the end of the Stone Age and the onset of the Copper Age. The evolution continued with the invention of bronze, a notable alloy of copper and tin, heralding the Bronze Age. Ancient civilizations utilized lead in various applications such as plumbing and cosmetics. Zinc also played a crucial role, with evidence of its production in ancient India and China dating back to 1400-1000 BCE, where it was used in medicinal applications and brass production. Aluminum, however, remained a rarity until the 19th century due to the complexities in its extraction, until advancements made it more accessible.

Ferrous Metals

The use of ferrous metals, primarily iron, began around 1,200 BC, signaling the start of the Iron Age. Iron production became widespread due to its abundance compared to copper and tin. This transition was significant as iron was more readily available from ore sources, and advancements in smelting and forging made it a versatile and essential material. Iron’s role was pivotal in shaping human civilizations, from being used in tools and weapons to its crucial part in construction and machinery. This metal’s widespread use eventually led to the Industrial Revolution, where iron and steel production became central to industrialization and modernization efforts.

What is Ferrous Metal?

Ferrous metals are primarily made of iron. These metals offer exceptional mechanical properties such as high strength, durability, and the ability to withstand extreme temperatures, making them invaluable in construction, automotive, and machinery manufacturing industries. However, when exposed to moisture and oxygen, their susceptibility to rust and corrosion requires protective measures like coatings or alloys. Despite these drawbacks, ferrous metals remain vital in various applications due to their reliability and performance. 

Which Metals Are Ferrous?

Steel

Steel is produced by combining iron with carbon, which strengthens it. Alloy steel becomes even more resilient with the addition of elements like chromium and nickel. The process involves heating and melting iron ore in furnaces and then pouring the molten steel into molds to create steel bars. Steel is found to be extensively used in construction and manufacturing.

Carbon Steel

Carbon steel, with its elevated carbon content, is notably hard, making it a popular choice for manufacturing machine tools, drills, blades, taps, and springs. Its ability to maintain a sharp cutting edge is particularly valued.

Alloy Steel

Alloy steels, which blend elements like chromium, nickel, and titanium, enhance strength and durability without adding extra weight. Stainless steel, a significant alloy steel containing chromium, is crucially used in various applications, including construction, machine tools, and electrical components.

Cast Iron

Cast iron, an alloy comprising iron, carbon, and silicon, is known for its brittleness, hardness, and wear resistance. It finds applications in water pipes, machine tools, automobile engines, and stoves.

Wrought Iron

Wrought iron is an alloy with so little carbon content it’s almost pure iron. During the manufacturing process, some slag is added, giving wrought iron excellent resistance to corrosion and oxidation; however, it is low in hardness and fatigue strength. Wrought iron is used for fencing and railings, agricultural implements, nails, barbed wire, chains, and various ornaments.

Applications of Ferrous Metals  

With their exceptional strength, durability, and magnetic properties, ferrous metals find diverse applications across various industries and contribute to the backbone of modern infrastructure and manufacturing. 

  1. Construction: Essential for structural elements like beams and columns, ensuring stability in buildings and bridges. 
  1. Automotive Manufacturing: Used for engine blocks, chassis, and suspension parts, guaranteeing vehicle safety and performance. 
  1. Machinery Manufacturing: Relies on ferrous metals for components like gears and shafts, providing strength and wear resistance for heavy-duty operations. 
  1. Infrastructure Development: Ferrous metals are crucial for pipelines, railways, and power transmission towers. They ensure reliability and longevity for essential systems and foster economic growth and societal advancement.

What is Non-Ferrous Metal?

A non-ferrous metal is a type of metal that does not contain iron in significant amounts or has iron content low enough to be negligible. Unlike ferrous metals, non-ferrous metals lack magnetic properties and are generally more resistant to rust and corrosion, making them ideal for applications exposed to moisture or harsh environments. These metals are essential in several industries, mainly when factors like electrical conductivity, corrosion resistance, and lightweight design are crucial. Their unique properties make them highly sought after in various applications.

Which Metals Are Non-Ferrous?

Aluminum

Aluminum is light, soft, and has limited strength, but it’s easy to cast, forge, machine, and weld. However, it could be better for high-temperature conditions. Its lightweight nature makes it great for aircraft and food can production, castings, pistons, railways, cars, and kitchen tools.

Copper

Copper, with its distinctive red hue, is extremely ductile and malleable and boasts excellent conductivity for electricity and heat. It is primarily used in electrical applications like wiring and conductors. Additionally, it’s utilized in sheet roofing, cartridge cases, statues, and bearings. Moreover, copper is a key component in brass production, an alloy blending copper with zinc.

Lead

Lead is a soft, dense metal with a low melting point and weak tensile strength. Despite this, it can resist corrosion from moisture and various acids. Lead is widely used in electrical cables, batteries, construction, and soldering applications.

Zinc

Zinc has moderate to low strength and a notably low melting point. While it’s easy to machine, caution is needed when heating to prevent crystal cleavage. Its primary use is galvanizing, where a zinc coating is applied to iron or steel to prevent rust.

Tin

Tin, known for its softness, malleability, and low tensile strength, is commonly used to coat steel and create tinplate steel for food cans. While tin foil was once famous for food wrapping, aluminum foil has largely replaced it. Tin can also be combined with copper to form tin brass and bronze alloys.

Applications of Non-Ferrous Metals 

Non-ferrous metals, prized for their diverse properties and resistance to corrosion, play essential roles in a wide range of industries and contribute to developing advanced technologies and everyday essentials.

  1. Electrical and Electronics: Their excellent conductivity makes them ideal for wiring and circuitry, ensuring efficiency and reliability. 
  1. Aerospace and Aviation: Rely on lightweight metals like aluminum and titanium for fuel-efficient aircraft components that meet stringent performance standards.
  1. Marine: In corrosive environments, non-ferrous metals like stainless steel and aluminum are preferred for structures, ensuring longevity and reliability. 
  1. Food and Beverage Industry: These metals are valued for their hygienic properties and resistance to corrosion, with stainless steel being favored for food-grade equipment due to its ease of cleaning and sterilization.

Ferrous vs Non-Ferrous: In Comparison

Metals are broadly categorized into ferrous, rich in iron and offering strength but prone to corrosion, and non-ferrous, iron-free with qualities such as corrosion resistance and conductivity. Whether you require ferrous metals’ durability or non-ferrous metals’ resistance and conductivity, Fast Metals provides a wide range of metal materials.

Visit our online shop to find your project’s ideal ferrous or non-ferrous metal.

Ferrous MetalsNon-Ferrous Metals
Iron ContentFerrous metals have a high iron content, usually over 50% by weight.Non-ferrous metals have minimal iron, typically less than 50%.
Magnetic PropertiesHave high magnetic propertiesNon-magnetic
Corrosion SusceptibilityTheir iron content makes them prone to rust and corrosion, with the exemption of stainless steel and wrought iron.Good resistance to rust and corrosion is beneficial in applications where moisture is a factor (ex: roofing, gutters, piping, etc.)
DensityDenser and HeavierLighter and less dense
Strength and DurabilityStrong, durable, and used for structural and load-bearing purposes.Metals like copper and aluminum are excellent at conducting electricity and heat.

Shop Now at FastMetals — Your One-Stop Online Metal Shop!

Discover the convenience and efficiency of FastMetals! Catering primarily to fabricators, artists, hobbyists, and DIY enthusiasts, FastMetals offers instant pricing, same-day shipping, and no minimum order requirements — all at the click of a button!

Visit FastMetals now for your ferrous vs non-ferrous metal needs. Every order, big or small, is met with precision and care. Start your seamless shopping experience today!

Hot Rolled Steel vs Cold Rolled Steel

Hot-rolled and cold-finished steel products differ in their manufacturing processes, resulting in variations in properties and applications.

Hot Rolled Steel

  • Manufacturing Process: Hot-rolled steel is produced at high temperatures, typically above the recrystallization point of the steel, which makes it easier to shape and form. It goes through a rolling process where it’s compressed, stretched, and shaped into the desired form.
  • Surface Finish: Hot-rolled steel has a rough, scaly, and somewhat uneven surface. It has a characteristic oxide scale on the surface, which can be removed by pickling or abrasive processes.
  • Grain Structure: Hot-rolled steel has a larger grain structure due to the high temperatures involved in the manufacturing process. This can result in reduced strength and hardness compared to cold-finished steel.
  • Strength and Toughness: Hot-rolled steel tends to be less precise in dimension and shape but is generally less expensive. It is often used in structural applications, construction, and as a starting material for various manufacturing processes.
  • Applications: Hot-rolled steel is suitable for applications where surface finish and dimensional precision are less critical, such as structural components, railroad tracks, and automotive frames.

Cold Finished Steel

  • Manufacturing Process: Cold-finished steel is produced at or near room temperature. It is typically drawn, turned, or ground to achieve the desired dimensions and surface finish. This process enhances dimensional accuracy.
  • Surface Finish: Cold-finished steel has a smoother and more precise surface finish compared to hot-rolled steel. It often doesn’t require further surface treatment.
  • Grain Structure: Cold-finished steel has a smaller and more consistent grain structure, resulting in improved strength, hardness, and machinability.
  • Precision and Tolerance: Cold-finished steel products are produced with tight dimensional tolerances and are highly consistent in size and shape.
  • Applications: Cold-finished steel is commonly used in applications where precise dimensions, surface finish, and enhanced mechanical properties are crucial. These include shafts, fasteners, precision components, and tools.

In summary, the key difference between hot-rolled and cold-finished steel products lies in their manufacturing processes and the resulting properties. Hot-rolled steel is produced at high temperatures, tends to have a rough surface, and is less precise in terms of dimensions. Cold-finished steel, on the other hand, is manufactured at or near room temperature, has a smoother surface, tight dimensional tolerances, and improved mechanical properties, making it suitable for applications requiring precision and performance.

Pipe vs Tube

Metal pipes and metal tubes are both cylindrical structures made of metal, but they have some key differences in terms of their design, purpose, and typical applications.

Purpose & Function

  • Metal Pipe: Pipes are primarily designed to transport fluids, gases, or solids from one location to another. They are used for conveying substances like water, oil, gas, and various chemicals. Pipes often have specific standards and regulations depending on their intended use.
  • Metal Tube: Tubes, on the other hand, are more versatile and can serve various purposes beyond the transportation of materials. They are often used for structural applications, heat exchangers, mechanical components, and as a framework for various structures.

Wall Thicknesses

  • Metal Pipe: Pipes typically have a uniform wall thickness. The wall thickness is designed to withstand the specific pressure and temperature requirements of the substance being transported. Pipe walls are often thicker than those of tubes.
  • Metal Tube: Tubes can have varying wall thicknesses, making them suitable for a wide range of applications. Some tubes have thicker walls for structural strength, while others have thinner walls for heat exchange purposes

Shapes & Cross-Sections

  • Metal Pipe: Pipes are generally designed with a round cross-section, which is ideal for maintaining consistent flow and reducing resistance in fluid transportation.
  • Metal Tube: Tubes can have various cross-sectional shapes, including round, square, rectangular, and oval, depending on the intended application.

Manufacturing Standards

  • Metal Pipe: Pipes are often manufactured to specific industry standards, such as ASTM (American Society for Testing and Materials) or ASME (American Society of Mechanical Engineers) standards. These standards ensure that pipes meet the required quality and safety criteria.
  • Metal Tube: Tubes can also be manufactured to industry standards, but they are often more flexible in terms of size and shape, making them suitable for a wider range of custom applications.

Applications

  • Metal Pipe: Common applications for metal pipes include plumbing systems, oil and gas pipelines, and industrial processes where the conveyance of fluids and gases is essential.
  • Metal Tube: Metal tubes find applications in industries like construction, automotive manufacturing, aerospace, and engineering, where structural strength, heat transfer, or specialized shapes are required.

In summary, the key difference between metal pipes and metal tubes lies in their primary purpose and design. Pipes are mainly used for transporting materials, while tubes serve various structural and mechanical functions in addition to material conveyance. The choice between a pipe and a tube depends on the specific requirements of the application.

How is Brass Made?

Crafting brass is a complex journey that involves more than meets the eye. It takes both science and artistry to transform raw materials into beautiful objects. Creating brass involves several processes before it can become its recognizable bright gold appearance. Each step adds something special until we finally have one of mankind’s most enduring materials — brass.

Melting 

Melting brass begins by heating the metal until it reaches its low melting point at 1,999 degrees Fahrenheit. Once the metal has reached its melting point, it will liquefy at the edges first before flowing towards the center of the container where it is heated. 

Gradually increasing the temperature throughout this process, to avoid uneven heating or cooling, is critical. Without a gradual climb in temperature, cracks may be present in the final product. The zinc present in a brass alloy gives the finished product a yellowish tint and increases its strength, while in copper alloys produce a deeper color and add elasticity to the alloy. 

Cold Rolling and Annealing

Cold rolling is a process that involves passing the brass through a series of rollers at different temperatures. This process reduces the thickness of the sheet, as well as increases its length. Cold rolling improves the material’s flexibility, tensile strength, hardness, and yield strength.

The annealing process helps improve the mechanical properties of brass. Annealing means heating brass to a specific temperature for a specific amount of time. After cold rolling or annealing operations have been performed, it will be ready for further processing according to your specific needs.

Hot Rolling

Hot rolling is used to produce flat products, like sheet or plate, by passing them through a series of rollers under high pressure. The pressure causes the material to elongate and become thinner as it moves through each successive pair of rollers until it reaches its desired thickness.

This process can occur at room temperature or above 1,832 degrees Fahrenheit. In brass manufacturing, hot rolling produces large coils of material that is then further cut-to-size into pattern sizes.

What are Pipe Schedules?

For people new to working with pipe, referring to their “schedule” may be unfamiliar. Imagine you have two pipes in front of you: one labeled schedule 40, while the other is schedule 80. Both are manufactured of the same type of metal, with the same grade, and the same 3-inch diameter. So, what is it that makes these two pipes different, other than their schedule numbers?

First, it helps to understand the functional challenges faced by pipe. Pipe is designed to move along liquid or gas under pressure – pressure which can be internal, external, or both. To sustain fluid pressure, pipe must be strong enough to withstand a great deal of stress. This means the product dimensions of pipes aren’t simply measured by length and diameter, but its wall strength as well. A high-pressure fluid will require thicker pipe walls than pipes used for low-pressure applications like drainage.

Pipe Schedules
The wall thickness that determines a pipe’s strength is known as its schedule. Pipe schedules are a standard to identify wall thickness for the same size of pipe. The outer diameter of a particular pipe size will stay constant while the inner diameter varies according to the schedule type. Using the example of the 3-inch pipes, you can see the difference once you measure their inner diameter. The outer diameter for both pipes will remain approximately 3.5 inches, but their other qualities differ:

3” Schedule 40 pipe
• Wall thickness of 0.216 inches
• Inner diameter of 3.05 inches
• Weight per foot is 7.58 pounds

3” Schedule 80 pipe
• Wall thickness of 0.300 inches
• Inner diameter of 2.90 inches
• Weight per foot is 10.25 pounds

As you can tell, the schedule 80 pipe is significantly heavier due to its thicker walls. Those thicker walls mean schedule 80 pipe is better able to handle high pressure, which might cause greater wear or damage to schedule 40 pipe. Clearly, pipe schedules are quite important to ensure a project’s success and the best use of your funds. For home plumbing projects, schedule 40 pipe is sufficient, with no need to spend extra for schedule 80 pipe. For industrial uses, on the other hand, investing more money up-front for schedule 80 pipe may help prevent damage and costly repair work in the future.

Reliance Steel & Aluminum Co. Launches FastMetals E-Commerce Platform

LOS ANGELES, Feb. 19, 2020 (GLOBE NEWSWIRE) — Reliance Steel & Aluminum Co. (NYSE: RS) today announced the launch of its new e-commerce business, FastMetals, Inc. (www.fastmetals.com), which offers a catalogue pricing model for a diverse selection of metal products including carbon, stainless, aluminum and specialty alloy steels. Located in Massillon, Ohio, FastMetals ships nationwide and has direct access to Reliance’s vast network of metals service center locations which carry over 100,000 products.

“FastMetals was created in response to the growing demand for digital purchasing solutions from metalworkers of all backgrounds,” commented Jim Hoffman, President and Chief Executive Officer of Reliance. “Consistent with Reliance’s core business strategy, FastMetals specializes in small orders with quick-turn around and best-in-class customer service. We are excited to launch this new, innovative venture that differs from our traditional sales model as simply another option for customers to purchase metal from us. Many of our existing service centers presently offer online capabilities and continue to receive inquiries via phone, email or other means based on the individual customer’s preference. FastMetals is yet another channel to experience Reliance’s unique, customer-focused service.”

FastMetals’ model is tailored to smaller, specialized end-users including artists, fabricators, machine shops, hobbyists, and do-it-yourself practitioners. Customers can choose from standard shapes and sizes or select specific dimensions to satisfy unique project requirements. FastMetals provides instant pricing, same-day shipping, no minimum order quantity and direct fulfillment to the individual customer.

About Reliance Steel & Aluminum Co.
Reliance Steel & Aluminum Co. (NYSE:RS), headquartered in Los Angeles, California, is the largest metals service center company in North America. Through a network of more than 300 locations in 40 states and thirteen countries outside of the United States, Reliance provides value-added metals processing services and distributes a full line of over 100,000 metal products to more than 125,000 customers in a broad range of industries. Reliance focuses on small orders with quick turnaround and increasing levels of value-added processing. In 2018, Reliance’s average order size was $2,130, approximately 49% of orders included value-added processing and approximately 40% of orders were delivered within 24 hours. Reliance Steel & Aluminum Co.’s press releases and additional information are available on the Company’s website at www.rsac.com.


Brenda Miyamoto
Investor Relations
(213) 576-2428
investor@rsac.com

or Addo Investor Relations
(310) 829-5400