Pipe vs Tube

Metal pipes and metal tubes are both cylindrical structures made of metal, but they have some key differences in terms of their design, purpose, and typical applications.

Purpose & Function

  • Metal Pipe: Pipes are primarily designed to transport fluids, gases, or solids from one location to another. They are used for conveying substances like water, oil, gas, and various chemicals. Pipes often have specific standards and regulations depending on their intended use.
  • Metal Tube: Tubes, on the other hand, are more versatile and can serve various purposes beyond the transportation of materials. They are often used for structural applications, heat exchangers, mechanical components, and as a framework for various structures.

Wall Thicknesses

  • Metal Pipe: Pipes typically have a uniform wall thickness. The wall thickness is designed to withstand the specific pressure and temperature requirements of the substance being transported. Pipe walls are often thicker than those of tubes.
  • Metal Tube: Tubes can have varying wall thicknesses, making them suitable for a wide range of applications. Some tubes have thicker walls for structural strength, while others have thinner walls for heat exchange purposes

Shapes & Cross-Sections

  • Metal Pipe: Pipes are generally designed with a round cross-section, which is ideal for maintaining consistent flow and reducing resistance in fluid transportation.
  • Metal Tube: Tubes can have various cross-sectional shapes, including round, square, rectangular, and oval, depending on the intended application.

Manufacturing Standards

  • Metal Pipe: Pipes are often manufactured to specific industry standards, such as ASTM (American Society for Testing and Materials) or ASME (American Society of Mechanical Engineers) standards. These standards ensure that pipes meet the required quality and safety criteria.
  • Metal Tube: Tubes can also be manufactured to industry standards, but they are often more flexible in terms of size and shape, making them suitable for a wider range of custom applications.

Applications

  • Metal Pipe: Common applications for metal pipes include plumbing systems, oil and gas pipelines, and industrial processes where the conveyance of fluids and gases is essential.
  • Metal Tube: Metal tubes find applications in industries like construction, automotive manufacturing, aerospace, and engineering, where structural strength, heat transfer, or specialized shapes are required.

In summary, the key difference between metal pipes and metal tubes lies in their primary purpose and design. Pipes are mainly used for transporting materials, while tubes serve various structural and mechanical functions in addition to material conveyance. The choice between a pipe and a tube depends on the specific requirements of the application.

How is Brass Made?

Crafting brass is a complex journey that involves more than meets the eye. It takes both science and artistry to transform raw materials into beautiful objects. Creating brass involves several processes before it can become its recognizable bright gold appearance. Each step adds something special until we finally have one of mankind’s most enduring materials — brass.

Melting 

Melting brass begins by heating the metal until it reaches its low melting point at 1,999 degrees Fahrenheit. Once the metal has reached its melting point, it will liquefy at the edges first before flowing towards the center of the container where it is heated. 

Gradually increasing the temperature throughout this process, to avoid uneven heating or cooling, is critical. Without a gradual climb in temperature, cracks may be present in the final product. The zinc present in a brass alloy gives the finished product a yellowish tint and increases its strength, while in copper alloys produce a deeper color and add elasticity to the alloy. 

Cold Rolling and Annealing

Cold rolling is a process that involves passing the brass through a series of rollers at different temperatures. This process reduces the thickness of the sheet, as well as increases its length. Cold rolling improves the material’s flexibility, tensile strength, hardness, and yield strength.

The annealing process helps improve the mechanical properties of brass. Annealing means heating brass to a specific temperature for a specific amount of time. After cold rolling or annealing operations have been performed, it will be ready for further processing according to your specific needs.

Hot Rolling

Hot rolling is used to produce flat products, like sheet or plate, by passing them through a series of rollers under high pressure. The pressure causes the material to elongate and become thinner as it moves through each successive pair of rollers until it reaches its desired thickness.

This process can occur at room temperature or above 1,832 degrees Fahrenheit. In brass manufacturing, hot rolling produces large coils of material that is then further cut-to-size into pattern sizes.

What are Pipe Schedules?

For people new to working with pipe, referring to their “schedule” may be unfamiliar. Imagine you have two pipes in front of you: one labeled schedule 40, while the other is schedule 80. Both are manufactured of the same type of metal, with the same grade, and the same 3-inch diameter. So, what is it that makes these two pipes different, other than their schedule numbers?

First, it helps to understand the functional challenges faced by pipe. Pipe is designed to move along liquid or gas under pressure – pressure which can be internal, external, or both. To sustain fluid pressure, pipe must be strong enough to withstand a great deal of stress. This means the product dimensions of pipes aren’t simply measured by length and diameter, but its wall strength as well. A high-pressure fluid will require thicker pipe walls than pipes used for low-pressure applications like drainage.

Pipe Schedules
The wall thickness that determines a pipe’s strength is known as its schedule. Pipe schedules are a standard to identify wall thickness for the same size of pipe. The outer diameter of a particular pipe size will stay constant while the inner diameter varies according to the schedule type. Using the example of the 3-inch pipes, you can see the difference once you measure their inner diameter. The outer diameter for both pipes will remain approximately 3.5 inches, but their other qualities differ:

3” Schedule 40 pipe
• Wall thickness of 0.216 inches
• Inner diameter of 3.05 inches
• Weight per foot is 7.58 pounds

3” Schedule 80 pipe
• Wall thickness of 0.300 inches
• Inner diameter of 2.90 inches
• Weight per foot is 10.25 pounds

As you can tell, the schedule 80 pipe is significantly heavier due to its thicker walls. Those thicker walls mean schedule 80 pipe is better able to handle high pressure, which might cause greater wear or damage to schedule 40 pipe. Clearly, pipe schedules are quite important to ensure a project’s success and the best use of your funds. For home plumbing projects, schedule 40 pipe is sufficient, with no need to spend extra for schedule 80 pipe. For industrial uses, on the other hand, investing more money up-front for schedule 80 pipe may help prevent damage and costly repair work in the future.

Reliance Steel & Aluminum Co. Launches FastMetals E-Commerce Platform

LOS ANGELES, Feb. 19, 2020 (GLOBE NEWSWIRE) — Reliance Steel & Aluminum Co. (NYSE: RS) today announced the launch of its new e-commerce business, FastMetals, Inc. (www.fastmetals.com), which offers a catalogue pricing model for a diverse selection of metal products including carbon, stainless, aluminum and specialty alloy steels. Located in Massillon, Ohio, FastMetals ships nationwide and has direct access to Reliance’s vast network of metals service center locations which carry over 100,000 products.

“FastMetals was created in response to the growing demand for digital purchasing solutions from metalworkers of all backgrounds,” commented Jim Hoffman, President and Chief Executive Officer of Reliance. “Consistent with Reliance’s core business strategy, FastMetals specializes in small orders with quick-turn around and best-in-class customer service. We are excited to launch this new, innovative venture that differs from our traditional sales model as simply another option for customers to purchase metal from us. Many of our existing service centers presently offer online capabilities and continue to receive inquiries via phone, email or other means based on the individual customer’s preference. FastMetals is yet another channel to experience Reliance’s unique, customer-focused service.”

FastMetals’ model is tailored to smaller, specialized end-users including artists, fabricators, machine shops, hobbyists, and do-it-yourself practitioners. Customers can choose from standard shapes and sizes or select specific dimensions to satisfy unique project requirements. FastMetals provides instant pricing, same-day shipping, no minimum order quantity and direct fulfillment to the individual customer.

About Reliance Steel & Aluminum Co.
Reliance Steel & Aluminum Co. (NYSE:RS), headquartered in Los Angeles, California, is the largest metals service center company in North America. Through a network of more than 300 locations in 40 states and thirteen countries outside of the United States, Reliance provides value-added metals processing services and distributes a full line of over 100,000 metal products to more than 125,000 customers in a broad range of industries. Reliance focuses on small orders with quick turnaround and increasing levels of value-added processing. In 2018, Reliance’s average order size was $2,130, approximately 49% of orders included value-added processing and approximately 40% of orders were delivered within 24 hours. Reliance Steel & Aluminum Co.’s press releases and additional information are available on the Company’s website at www.rsac.com.


Brenda Miyamoto
Investor Relations
(213) 576-2428
investor@rsac.com

or Addo Investor Relations
(310) 829-5400