Heat’s Effect on Metal Properties

Often when we speak of heat, it concerns scenarios we’d rather avoid: getting sweaty and sunburnt from the summer sun, overheating laptops or car engines, maybe singeing your hair after leaning too close to a candle. And rightly so! In all these cases heat can be damaging, whether to your possessions or your own self.

Yet despite some risks, heat is greatly beneficial. The sun’s beams feel warm and pleasant after a cold winter. The flames of a stove burner or grill cook your food. And when it comes to metal, heat is no different. Too much heat can damage metal to the point of weakening or destroying it. But heat is also a transformative force, from forging the metal to hardening it and modifying its mechanical properties.

There are four ways the application of heat affects metal:

  • Structural
  • Electrical Resistance
  • Magnetism
  • Thermal Expansion

Structural

Heat is a crucial part of the metal making process, with furnaces heated to such high temperatures that metal ore turns molten. However, it’s not always necessary to go to such extremes to affect the properties of the metal. Any time metal is heated, the atoms making up the metal or alloy begin to move. Given enough heat and then carefully cooled, the crystal structure of the metal can be reshaped into a lattice that is much stronger than prior to heat treatment. In the case of high carbon steels, heat application allows the iron to absorb additional carbon, which produces an exceptionally hard and strong steel.

Electrical Resistance

As metal is heated, the electrons within it will absorb energy and move faster. The faster the electrons move, the more likely they are to collide with the metal’s atoms and scatter them. Electrical resistance measures how strongly the metal works against this potential scattering as the temperature rises. That means the higher the electrical resistance of a metal, the lower its conductivity.

Magnetism

There are three elements with naturally magnetic properties, known as ferromagnetic metals: iron, cobalt, and nickel. But once heat is applied – and especially as the temperature goes up – the metal’s natural magnetism is reduced. If heated to a certain point known as the metal’s Curie temperature, its magnetic property will be reduced completely.

Thermal Expansion

As metal is heated, it begins to expand; its volume, length and overall surface area will grow as it continues to absorb more heat. This is due to the atoms making up the metal, which increase their movement as the temperature rises. This movement creates vibrations within the metal’s structure to the point that it swells, an occurrence which is known as thermal expansion. For safety reasons, any metal structure such as bridges or buildings must be designed to accommodate a certain degree of thermal expansion and contraction. Otherwise, you run the risk of damaging the metal as it warms and cools.

Quenching Explained

What is Quenching?

If you’ve watched medieval-themed movies and shows, this is a familiar scene: a blacksmith hammering away at an anvil, before plunging a sword into water amid huge clouds of steam. What you may not realize is that you’ve just witnessed quenching in action. While water might be the favored choice for its dramatic effects onscreen, professionals in metal working use a variety of methods ranging from air to oil to brine. But whatever the medium used, the basic concept is the same: forcing the rapid cooling of heat-treated metal.

Purpose of Quenching
During the heat treatment process, the metal is heated to a point above its recrystallization temperature but just below melting. It’s then left for a set period of time to allow the heat to completely permeate the metal. Once removed, it’s considered to be annealed metal if left to cool naturally at room temperature. However, this method can result in a drastically altered metal microstructure, which may not be the desired effect. With quenching, the rapid cooling effectively locks in the microstructure existing in the heated metal. What this means is that a harder, stronger metal is produced once it cools.

Quenching Media
The substance used in quenching is referred to as the medium, and the medium determines the quench’s severity. The more quickly you are able to draw heat out of the metal, the more severe the quench. However, faster isn’t always ¬-better. The rolling clouds of steam produced by plunging that red-hot sword into water? In reality, while water is a very effective medium for hardening metal, it can also be a risky one. If the metal is too hot and the water too cool, you may be left with cracked or distorted pieces.
The chemical composition of the metal, as well as the desired degree of hardness, also factors into the choice of quenching medium. Carbon steel and low-carbon steel alloys generally require a more severe quench in order to produce the right degree of hardness. In contrast, high-carbon steel alloys are already a harder type of metal. So lower-impact, less severe quenching media can be used to produce the hardened steel.

Here are the most commonly used types of quenching media, ranked from most to least severe:
Caustics: This involves some combination of water, salt, and caustic sodas to create a brine. However, heat dissipates so quickly in water that it can create an overload of tension between the metal’s surface and its core. When this occurs, the metal part may be left with damage such as warping. So special care is taken to properly balance the temperatures, while workers protect their eyes and skin against any exposure to the caustic solution.

Oil: The most popular medium of choice is oil, since it combines a relatively severe quenching with a lower risk of warps and cracks. It also provides more flexibility during the process, depending on the composition and temperature of the oil. If a higher degree of quenching severity is required, a “fast” oil is used – one formulated to cool the metal very quickly. Low-carbon steels do particularly well in fast oils, because it provides the rapid cooling needed to give the metal more hardness. Meanwhile, high-carbon steels and more intricately-designed metal parts benefit from a less drastic approach. An immersion in heated oil will cool the metal, but at a more controlled and gradual pace.
However, oil brings its own risks during the quenching process. Unlike water and other caustic solutions, oil is flammable. Workers must pay attention to each oil’s flashpoint to avoid any risk of fire during the process.

Salts: Also known as salt baths, this method provides a less severe quenching because the molten salt is hotter than heated oils. This level of heat allows for a slower and more uniform cooling, producing metal with fewer distortions and other defects. So when quenching precision-machined parts and tools, salt baths might be your best choice. The salt baths can also be a long-lasting and cost effective method, so long as they’re properly maintained. The removal of any remaining oxides or other contaminants from the salt bath after quenching will allow for its extended use.

Air/Gas: Air is another popular option for quenching, in large part due to its affordability. If the material is left to cool on its own down to room temperature, it is considered air-quenched (although this is generally done for annealing). For quenching purposes, forced air is used to speed the rate of cooling. However, while this is more efficient from still air, it does require an extended period of cooling – and more time ups the risk of allowing the metal’s microstructure to change. A quicker quenching can be done with gases such as nitrogen, although the trade-off is the increased cost in comparison to air.

MTR: Mill Test Reports

Each day, we take for granted that the metals we encounter and use in our ordinary lives are safe. The steel framing in apartments and high-rise buildings, the aluminum fuselage of a passenger plane, the metal making up our cars and appliances: very rarely do we question the composition of the metal itself. Our lives go smoothly because we can trust these metals are safe and sturdy. We’re able to make that assumption because of the quality controls practiced by the metal industry, and that quality assurance rests largely on the mill test report (MTR).
At every step of the manufacturing process, the metal is accompanied by its MTR. From the mill forging the material, to the service center performing heat processing and finishing, to the company purchasing the items, the MTR passes from hand to hand. But what exactly is included in a mill report that makes it so important?


Mill Test Report
¬As might be expected, most mills will have their own style and layout for an MTR. They may not even call it a Mill Test Report at all: MTR is industry jargon that can also refer to a Material Test Report, a Mill Certification, or Mill Inspection Certificate. But whatever the name, the information the MTR includes is standard across the industry. When reviewing the document, you can expect it to list the following:

• Production information: the metal’s country of origin, melt location, and manufacturer’s name

• Product description: the item’s alloy, temper, grade, finish, width, thickness, and weight

• Material heat number: also referred to as the heat lot, this is an identifying code that is stamped directly onto the metal itself. As each lot of metal is produced, it is assigned a unique code to identify it as part of that batch. This provides a high degree of traceability, no matter where the metal might end up or its purpose. If there is any type of recall or issue with the metal, this number allows it to be traced back to its origin.

• Mechanical and physical properties: this states the metal is compliant with the criteria set by an international standards organization, such as ASME or ANSI. It is especially important in the case of alloys, because it certifies the chemical makeup of the metal. This is where the “test” portion of the MTR applies. While the metal is molten, a sample is drawn from each batch for metallurgical chemical analysis. Once the item is forged, mechanical testing is then performed on the finished item. Putting items such as steel plate through hardness, tensile and impact tests establish that the material will perform to the necessary standards under specific conditions.

• Inspection: in addition to the mill’s test information, the metal requires certification from an independent inspector. This means the MTR typically includes two signatures verifying the material’s makeup: one from the mill itself while producing the metal, and a second from the inspection agency. This third party inspection provides additional authentication of the metal’s physical and mechanical properties, along with confirmation that the heat number matches the actual item. If all information is correct, the inspector signs off on the report as a final step.



Do I Need the MTR?
For companies involved in the industrial side of manufacturing, distribution, and use of metals, MTRs are a necessity. These standards ensure that the metals will be appropriate for their intended use, and able to measure up successfully to further processing such as welding with compatible metals. If the finished goods or structures later experience some type of metal failure, the information provided by the MTR enables every item can be traced back to its source.
However, MTRs aren’t a necessity for the average consumer. Buying from reputable mills and distributors means that they have done the groundwork for you by collecting the MTRs for their products. Companies are required to keep their MTR documentation for a minimum of three years. However, many companies keep their records for much longer, priding themselves on being able to trace back their materials whenever the occasion may arise.

Annealing vs Tempering

Annealing and tempering are two of the most common heat treatment services used in metal production. But you may wonder: what is the purpose of heat treating in the first place? What differentiates these processes, and why choose one over the other?

Heat Treatment
When producing metal products, a beam or plate emerging from the casts aren’t necessarily considered to be finished. Through heat treatment, the physical and mechanical properties of the metal can be changed without affecting its shape. So the metal is heated short of the point where it would begin to melt or deform its shape, but high enough to modify its internal crystallization structure.
The goal is that after completing its heat treatment, the item will have been transformed to produce a more useful type of metal. With heat treatment, there will be improvements in the metal’s toughness, strength, and durability. But it can also boost assets in different areas: one process can produce a more ductile product, while another creates a tougher one. This is where the choice of heat treatment is key: once you identify what qualities are most important for the finished product, it will help determine which method is best to use.

Tempering
Tempering is usually performed on steel and other iron alloys, because those freshly-cast metals are extremely hard. This might sound like a nice benefit – but that high degree of hardness causes the steel to be brittle and susceptible to cracking. This means the untempered metals are considered unsuitable for most applications due to their structural vulnerability. But with tempering, some of this excess hardness is reduced. What remains afterwards is still a very hard metal, but enough internal stress has been alleviated to make it stronger overall.
When casting steel, once the metal has been formed into its desired shape, it’s immediately quenched to cool it as fast as possible. Think of it like immersing blanched vegetables in an ice bath: the goal is to lock in the iron’s structure at its peak. However as mentioned previously, while this quenched metal is incredibly hard, it is quite brittle. It is critical to follow the quenching process immediately with tempering, to help refine the steel before it can cool with existing flaws or weaknesses.
To begin tempering, the metal is placed in an oven. The oven’s heat is then carefully and gradually raised to avoid any metal cracking. Once it hits the desired temperature, the steel is held there for a length of time to allow the heat to permeate it completely. It is then removed and allowed to cool in open air.
When the tempering process is completed, it will have changed the metal’s ductility, strength, toughness, and hardness. What initially was an item too hard and brittle for use is now ready for sale or additional processing. The use of tempered steels include applications where toughness and strength are critical: construction, industrial machinery, and cutting implements.

Annealing
At first, annealing seems virtually the same as tempering: slowly heating metal to a specific temperature, and then letting it cool. But the big difference comes down to cooling. With tempering, the metal is removed from the oven and allowed to cool on its own to room temperature. Annealing, on the other hand, involves great effort to extend that cooling period as long as possible.
Why is this slow cooling significant? It’s because as the metal cools, its crystal structure continues to change with the temperature. Tempering is a simpler process because the main objective is to reduce brittleness. In annealing, the extended cooling allows for even more transformation and refinement of the metal’s structure. One method of cooling is simply turning down the oven until the temperature reaches zero, and letting the metal cool with its surroundings. Another approach is removing the metal from the oven and insulating it in a low-conductivity material such as sand or ashes. Either way, by the time it reaches room temperature, annealed metals will be a softer material compared to tempered ones.
This softness makes annealed metal well-suited for applications where it won’t experience major stresses, but ductility is important. You will find annealed copper in electrical wiring, annealed brass in pipes and fixtures, and annealed aluminum in a variety of sheet and shapes.

What is a Non-Ferrous Metal?

If you were asked the definition of a non-ferrous metal, the answer may seem obvious: it’s a metal which contains no iron. And while that’s true, it might surprise you that the answer is not entirely correct! Non-ferrous metal is a sprawling category, which covers iron-free metals such as aluminum or copper. But a metal is also defined as “non-ferrous” when its chemical composition does not include a significant amount of iron. This means even an alloy with trace amounts of iron can be correctly identified as being made of non-ferrous metal. A ferrous metal will have iron as the first or second most-abundant element in its makeup. But if iron is present in a non-ferrous metal, it will typically be less than 1% of the metal’s overall composition.

So because the non-ferrous category covers so many different varieties of metal, it can be very difficult to identify common properties shared by them all. Some non-ferrous metals are very soft and ductile, while others are hard and brittle. One non-ferrous metal may be durable enough to weather freezing temperatures, but another is well-suited to withstand extremely high heat. However, there is one common denominator to be found amongst non-ferrous metals: they don’t rust. Since they contain very minimal to no iron, there’s little opportunity for the development of a significant amount of iron oxide. And that means the metal doesn’t show signs of rust.

However, it doesn’t mean non-ferrous metals are corrosion-free. In fact, some non-ferrous metals such as zinc are highly corrosive – much more so than iron itself! But because the term ‘rust’ only applies to the formation of iron oxide, non-ferrous metals technically do corrode but they don’t rust.

Common Non-Ferrous Metals
Aluminum
One of the most widely used non-ferrous metals, aluminum in its pure form is soft and not particularly strong. Once alloyed, it gains strength and durability while remaining relatively lightweight. These assets, along with its machinability, makes it very popular in manufacturing. Common applications for aluminum range from aircraft fuselage and cars, to drink cans and kitchen utensils.

Copper
Like aluminum, unalloyed copper is softer and less strong in comparison to carbon steel. One of its most desirable qualities is its high thermal and electrical conductivity, which is why pure copper is commonly found in wiring and high-end cookware. When alloyed with zinc, it forms another non-ferrous metal, brass. Brass is stronger than copper, while retaining a high degree of malleability. This makes it popular for fittings and castings in a variety of shapes. Copper can also be alloyed with tin to create bronze – again creating a stronger and harder metal than the original copper, with better durability. Given the toughness of bronze parts, it’s a popular choice to manufacture bearings, electrical connectors, and springs.

Zinc
Zinc is a non-ferrous metal with a low melting point. As mentioned before, it is more likely to corrode than iron. However, the type of corrosion produced by zinc is beneficial: the zinc oxide which forms on the layer of the metal stops any further corrosion from reaching inside. For this reason, of the most common uses for zinc is in galvanizing other metals. The outer layer of zinc forms a protective coat on steel or iron to prevent rust.

The Stages of Metal Fatigue

It’s well known that the long term consequences of living under chronic stress are harsh, taking a toll on our health ­­and overall well-being. When it comes to the harmful effects of stress, metal is no different: too much repeated wear and tension will lead to fatigue, and eventually to a breaking point. And much like our bodies, a metal’s breakdown won’t necessarily occur from one major incident. Often the cracking and weakening that leads to metal fatigue will be gradual, going unnoticed until it’s too late.­­

­­­

In the development of metal fatigue, there are three stages:

Stage 1: Crack Initiation

Fatigue cracks will almost always begin around a stress riser point, an area of the metal where the stress becomes concentrated. The stress riser’s susceptibility to cracking may stem from irregularities in the material itself, flaws in the metal part’s construction, or from vulnerabilities caused by damage such as scuffs and scratches. But whatever the reason for a stress riser, its weakness means that micro-cracks in the metal are likely to begin there. The edges of a metal part can be stress risers, since they’re most likely to be receive the brunt of an impact and be damaged. Weld joints are often the culprit as well, since the join of the weld may be weaker than the surrounding material.

Stage 2: Crack Propagation

Repeated stresses will cause micro-cracks, and if they continue, those faults within the metal will begin to grow. Typically crack propagation will be the longest-running stage of metal fatigue, worsening slowly over time with steady repetition. However, it can be accelerated by other factors. Increased moisture collecting on the surface from weather, vibration from moving parts, and greater stress placed on the metal will all increase the likelihood of crack growth. The danger is that these accelerants are obvious pitfalls leading to metal failure, but metal fatigue is often much more subtle and easy to miss. Because of this, a lack of maintenance which allows the unchecked growth of micro-cracks can lead to a sudden and unpredictable failure.

Stage 3: Final Catastrophic Failure

If metal fatigue is allowed to progress to this stage, it will result in a final failure event: the metal will fracture. Depending on the material’s thickness, metal composition, and applied stress, the fracture will be either ductile or brittle. In a ductile fracture, the metal is deformed by being bent out of shape. The edges of the fracture may crumple and bend, but not necessarily break all the way through. When it comes to a brittle fracture, it’s exactly as it sounds: the metal shatters or snaps. In a typical case of brittle fracture metal fatigue, the pieces will snap completely apart. There will be little to no plastic deformation (a change in shape) in the metal as compared to a ductile fracture. Instead, you’ll see smooth snapped edges where the break occurs. In either case, the final stage of metal fatigue is often sudden and without obvious warning signs.

Common Metals That Don’t Rust

When it comes to protecting and maintaining metal, the most constant battle encountered will be against rust. Rust compromises a metal’s chemical characteristics, eventually leading to its disintegration. And even if it doesn’t progress to a destructive point, it’s just not very appealing on an aesthetic level. The distinctive orange-brown of rust forming on metal can make it look old and shabby long before its time. So one of the best solutions to this problem is to eliminate it from the start: choosing a metal that won’t rust.

Common rust-free metals include:

  • Aluminum
  • Stainless steel
  • Red metals (copper, brass, and bronze)
  • Galvanized steel

Aluminum

Aluminum and aluminum alloys cannot rust because they contain no to very little iron, and ‘true’ rust is made up of iron oxide. That doesn’t make aluminum indestructible, since it can still oxidize when exposed to water. But unlike iron oxide which will wear away at the underlying metal, the forming of aluminum oxide actually becomes a protective barrier. Once it develops on the aluminum’s surface, the oxide layer will be quite resistant to any additional corrosion.

Stainless steel

Most grades of stainless steel include at least some amount of iron, the element which leads to rust. However, the other alloying elements – particularly chromium – lends it protection to the material. Chromium tends to oxidize very quickly and like aluminum, the resulting oxide then forms a barrier against rust. With this chromium oxide layer in place, oxygen is no longer able to reach and react to the metal underneath. Other alloying elements in stainless steel such as nickel and molybdenum provide resistant to rust development.

Copper, brass, and bronze

Collectively known to as “red metals”, these metals can oxidize without rusting since they contain virtually no iron. Copper is very slow to react to oxygen and other environmental factors, but once corrosion does occur it will gradually turn the bright reddish metal to a verdigris green patina. Brass and bronze are copper alloys, with the dual benefits of copper’s own corrosion resistance and the rust-free properties of alloying elements. Both brass and bronze are even more resistant to corrosion than pure copper.

Galvanized steel

Unlike the other three types mentioned, galvanized steel relies upon the application of a physical barrier to prevent rust. Carbon steel is galvanized after being coated with a thin layer of zinc. After bonding with the surface, any oxidation which does occur becomes zinc oxide. A zinc layer exposed to water will become zinc carbonate, which is water-insoluble and puts a stop to any further chemical reactions. More importantly, whatever oxidation that takes place will affect the wear of the zinc before reaching the steel underneath.

How to Prevent Rust

We’ve all seen rust, whether it’s the dirty-orange flaking off a fence or swing set and marking up your children’s clothes, to the brownish water flowing in houses with old plumbing. But rust isn’t just an annoyance with its unsightly appearance and tendency to stain. For iron equipment and structures, rust can become a real danger when allowed to progress unchecked. In cases such as the Genoa bridge collapse in August 2018, a lack of maintenance to prevent rust and corrosion can lead to deadly consequences.

When it comes to iron corrosion, the equation is simple: oxygen from air or water + iron = rust. The longer iron is left exposed to oxygen, the more quickly and completely it will rust. So when it comes to rust prevention, the best solution is to somehow attempt to keep these elements apart. These methods include:

Materials

A common choice is to attempt to avoid the issue from the start by using steel alloys, weathering steels, or other alloys which contain virtually no iron. These materials are either naturally resistant to rust, or manufactured to be as rust-free as possible. Stainless steel contains at least 11% chromium, which forms a protective film of chromium oxide preventing any further corrosion. Weathering steels may include up to 21% alloying elements like chromium, phosphorus, nickel and copper. In comparison to stainless, weathering steel will form a patina and begin to look to look orange and rusty. However, appearances can be deceiving: unlike the damaging rust formed on iron structures, the rust formed on weathering steel is actually beneficial. The alloying elements stop any internal corrosion with the rust as an outer layer.

Organic coatings

A simple and cost-effective method of preventing rust is paint. Covering a metal item in an overall coat of paint creates a physical barrier between the metal and oxygen. Oil-based paints are usually the preferred option since they contain no water. It’s also appealing because the oil paint adheres better, is durable, and will dry to a more even finish.

Powder coatings

Like paint, a powder coating creates a protective layer to prevent rust. Powders are commonly applied to the steel by using a compressed air sprayer. Once the powder particles are clinging to the object’s surface in an even layer, it’s ready to be heat-cured. This involved placing the object in a hot oven, which will melt and fuse the powder particles into a continuous coat. So while this method involves more time and expense than painting, the biggest advantage of powder coating is its durability. Not only is it rust-resistant, it’s more resistant to chipping, scratching and other wear due to the thermal bonding of the curing process.

Galvanization

Steel is galvanized by applying a layer of zinc, which provides two benefits: it forms a strong physical barrier, and if corrosion does occur, it will affect the outer zinc rather the metal underneath. For items such as car exteriors that will later be painted, electroplating galvanization is used to bond the zinc to the steel. The process will leave the metal with a soft, even shine. For hot-dipping galvanization, the steel is immersed in a bath of molten zinc and dries to a flat finish. Hot-dipped galvanized steel is often preferred for construction projects because the resulting zinc layer may be up to 5 to 10 times thicker with this process. With each layer of zinc comes more protection against rust.

Maintenance

No matter what material is chosen or coating applied, the best protection against rust will always involve continued routine maintenance. Any deposits and dirt on the metal should be cleaned on a regular basis. If any rust does form on the surface, it should be removed it as quickly as possible, with a protective coating applied or re-applied to the item. Neglect means even a structure as strong as a bridge can be destroyed from the corrosive effects of air, water and salt rusting the steel.

What is a Ferrous Metal?

When classifying metals, focusing on a particular property is most often used as a way to divide them into two groups. Is this metal ductile or non-ductile? Is it magnetic or not?

When it comes to ferrous metals, one basic quality determines the groups: whether the metal contains iron. If iron makes up a large percentage of its composition, the metal is considered to be ferrous. If it contains no iron, or just trace amounts of it, it will be labeled a non-ferrous metal.

Beyond that, it becomes more difficult to apply general labels on the groups and the metals’ properties. While ferrous metals can range from iron itself to stainless steel, the alloying elements greatly affect the metal’s characteristics. For example, most ferrous metals are magnetic. But austenitic stainless steel is not, due to the high levels of nickel added to the steel for alloying. The nickel allows the steel to form in a crystal structure that is mostly austenite – and austenite is not magnetic.

So although it can be difficult to generalize about all ferrous metals as a group, there are some general characteristics that can be made about them. Ferrous metals are very hard and strong, especially in comparison to non-ferrous ones such as tin or copper. They’re vulnerable to rust due to their high percentage of iron, unless given corrosion resistance through alloying elements or protective coatings. And they’re usually (but not always) magnetic, which makes them very useful for motor and electrical applications.

The most common categories of ferrous metals include:

  • Carbon steel: there’s certainly no question of this being a ferrous metal, with over 90% of its composition being made up of iron. It is very hard and can keep a sharp edge, making it well-suited for mechanical uses such as drill bits and blades.
  • Cast iron: this metal is exceptionally hard due to its high levels of carbon, but the carbon also makes it quite brittle. For this reason, cast iron is now primarily used for smaller machine components or cookware.
  • Stainless steel: the most commonly used type of ferrous metals, especially for consumer goods. The addition of chromium is what makes a steel stainless, and gives it good corrosion resistance. And it’s magnetic, which is why you can stick magnetics on your refrigerator.
  • Alloy steel: the properties of this group of ferrous metals can vary much more widely than the others, since the alloy is specifically formulated for a particular purpose. So while alloy steels are ferrous, the added elements allows the metal to be tailored for more strength, ductility, hardness or other property.

What is the Difference between Annealing and Tempering?

At first glance, it might be difficult to distinguish annealing from tempering. Both are heat treatments designed to alter the physical and mechanical properties of a metal, and both involve heating that metal and gradually cooling it. So what makes the annealing steel different, and what are the advantages of this process?

When it comes to annealing, it’s important to remember how dependent the process is on precision and control. Like tempering, annealing involves reheating quenched steel and then allowing it to cool. However, at each stage of the annealing process, careful oversight is crucial to producing the most high-quality result possible.

Annealing involves three separate stages:

  1.  Recovery: simply put, this is applying heat to soften the metal. To ensure the most even heat distribution, air should be allowed to circulate freely around the items being annealed. For this reason, the heating is most often done in large ovens which can be tightly sealed, raised to the desired temperature, and closely monitored. Recovery then occurs when the heat breaks down dislocations and other irregularities within the metal’s structure.
  1. Recrystallization: during this stage, the heat is raised to above the metal’s recrystallization temperature while still remaining just below its melting point. This means that new smaller grains are formed within the steel, replacing older grains with pre-existing stresses. So while the finished product will be less hard then it was before, the uniform structure of the new grains will give the steel more strength and resiliency.
  1.  Grain growth: this is the cooling stage of the annealing process. In contrast to tempering, which allows the steel to cool naturally at room temperature, the cooling of annealed metals must be highly controlled. To do this, cooling is often done by immersing the hot steel into a low-conductivity environment such as burying it in sand or ashes. It can also be done by switching off the oven and allowing the metal to slowly cool within the machinery’s fading heat. Whatever the method used, the aim is to have as slow and gradual a cooling process as possible. When fully cooled, the steel will now possess a more refined micro-structure. In real terms, this means it has more elasticity, so that it can take the stress of machining or grinding with far less risk of cracking.

While all heat treatments result in a strengthened alloy, annealing is crucial for items that have previously been cold worked. Cold working produces stresses within the metal, which annealing then helps to reverse by bringing it closer to the metal’s original properties. That means the benefits of annealing are twofold: eliminating as much residual stresses as possible while restoring its strength and ductility. So while tempering is used for products such as structural beams, the more ductile steel produced through annealing is found in items like mattress springs, wiring, and tools.